

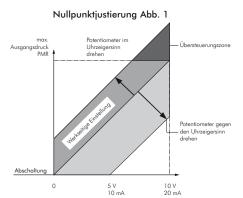
Proportionaldruckregelventile
- Typ DRP ... Proportionaldruckregler
- Typ DRPD ... , DRPE ... -

Proportionaldruckregler

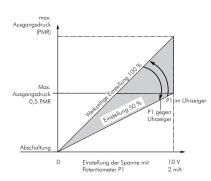
1. Inhalt

	nhaltsverzeichnis
	roportionaldruckregelventil mit elektronischer Regelung - Typ DRP
	.1. Justierung
	.2. Anschlüsse
	.3. Anschluß für Vakuum
2.	.4. Mögliche Fehlerquellen
2	.5. Technische Daten und Abmaße
3. Pı	roportionaldruckregler für Leitungseinbau und Schaltschrankmonatge - Typ DRPE, DRPD
	.1 Typ DRPE
	1.1. Merkmale
	1.2. Anwendung
	1.3. Beschreibung
	1.4. Technische Daten und Abmaße
	1.5. Connections
	1.6. Configurations
	.2 Typ DRPD
	.2.1 Merkmale
	.2.2. Anwendung
3.	.2.3. Beschreibung
3.	.2.4. Technische Daten und Abmaße
3.	.2.5. Connections
	.2.6. Configurations
	.3. Artikelnummern - Typ DRPE, DRPD

2. Proportionaldruckregelventil mit elektronischer Regelung - Typ DRP ... -

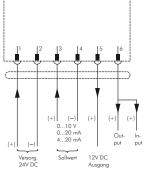

2.1. Justierung

Schritt 1 Mit dem Potentiometer P2 den minimalen Ausgangsdruck für den minimalen Sollwert einstellen (Nullpunkt). Es kann der max. Ausgangsdruck überschritten werden, das Ventil übersteuert und regelt nicht mehr. Siehe Abb. 1


Schritt 2 Mit dem Potentiometer P1 den maximalen Ausgangsdruck für den maximalen Sollwert einstellen

(Endwert).

Mit dem Potentiometer P7 die Proportionalverstärkung gegebenenfalls reduzieren. Änderung der Verstärkung zur Optimierung der schwingungsfreien Regelung. Schritt 3


Endwertjustierung

2.2. Anschlüsse

Elektrischer Anschluss

PIN	STDRP / STDRPW
	7 – polig, Draht Ø 0,14 mm²
1	grau
2	blau
3	gelb
4	grün
5	braun
6	weiß

ACHTUNG! Es ist unbedingt ein Potentialausgleich zwischen Pin2 (24V -) und Pin4 (Sollwert -) erforderlich. Diese Brücke muss extern verdrahtet werden.

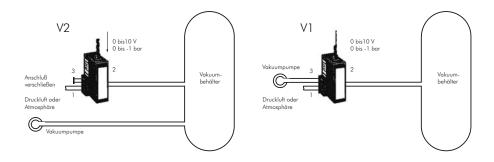
Pneumatischer Anschluss

Vor der Installation Rohrleitungssystem ausblasen, Späne, Rostpartikel entfernen. Kein Dichtungsband verwenden.

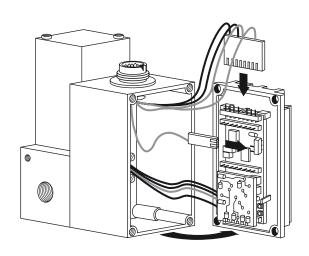
Anschluss 1, Versorgungsdruck: nicht größer als der max. zulässige Druck, jedoch min. 10 % über dem Ausgangsdruck Verschraubung und Druckleitung mit großem

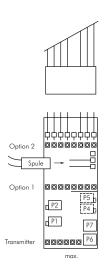
Anschluss 2, Ausgangsdruck: Querschnitt verwenden

Anschluss 3, Entlüftung: offen lassen oder Schalldämpfer mit niedrigem


Alle Angaben verstehen sich als unverbindliche Richtwerte! Für nicht schriftlich bestätigte Datenauswahl übernehmen wir keine Haftung. Druckangaben beziehen sich, soweit nicht anders ang

Proportionaldruckregler


2.3. Anschluss für Vakuum


Bypass-Regelung (V2): Empfehlenswerte Schaltung wenn der Behälter schnell evakuiert und geregelt werden soll. Die Pumpe wirkt direkt auf den Behälter ohne vom Regler gedrosselt zu werden. Am Anschluß 1 sollte ein Filter angebracht

Absperr-Regelung (V1): Empfehlenswert, wenn der Behälter wahlweise evakuiert oder mit Überdruck gefüllt werden soll. Am Anschluß 1 kann wahlweise Druckluft oder Atmosphäre angeschlossen werden. Ein Filter sollte vorgesetzt werden.

2.4. Mögliche Fehlerquellen

= Einstellung der Spanne

P2 P4-P5

Nullpunkteinstellung
 Eichung des Drucksensors: Diese Einstellung NICHT VERÄNDERN!
 Einstellung des Druckschalters (Fenstergröße) 1,4 bis 6 %

P6 P7 = Proportionalverstärkung (1 bis 11)

Fehler	mögliche Ursache	Maßnahme
Ausgangsdruck fehlt	 Versorgungsspannung an (1) und (2) ? 	• überprüfen
	• Signal an (3) und (4) ?	• überprüfen
	Falsch gepolt	• überprüfen
	Versorgungsdruck fehlt an "IN"	• überprüfen
	Drucksensor zerstört, weil zu hoher Versorgungs- druck auf "OUT" angeschlossen war ?	• auswechseln, zurück ins Werk
Ausgangsdruck zu niedrig	Versorgungsdruck zu niedrig	Versorgungsdruck erhöhen
	Volumenstrom zu hoch	Ventiltyp wechseln, Booster einsetzen
	• zu großer Spannungsfall auf der Signalleitung	größerer Drahtquerschnitt
	• zu großer Spannungsfall wegen zu langer Leitung	Stromregelung vornehmen
Ausgangsdruck schwingt	pneumatische Leitungsquerschnitte zu klein	Verschraubungs-, Leitungs-
	Eigenresonanzen	querschnitte möglichst groß
	Volumen an Ventilausgang zu klein	Ausgangsvolumen ändern, min. 0,11
		Versorgungsdruck ändern
		Booster in den Ausgang

Alle Angaben verstehen sich als unverbindliche Richtwerte! Für nicht schriftlich bestätigte Datenauswahl übernehmen wir keine Haftung. Druckangaben beziehen sich, soweit nicht anders angegeben, auf Flüssigkeiten der Gruppe II bei +20°C

Proportionaldruckregler

Fehler	mögliche Ursache	Maßnahme
Enddruck wird zu	Nennweite des Ventils zu klein	Ventil austauschen oder
langsam erreicht		Booster verwenden
	Druckaufbau zu langsam	größere Versorgungsleitung
	Verstärkung zu gering	werkseitig Dynamik elektr. erhöhen
Ausgangsdruck verändert	Signalspannung hat Störimpulse	mit Oszilloscop auf Störimpulse prüfen
sich sprungartig		
Ventil bläst dauernd aus	Ventilsitz nicht dicht geschlossen	• Filter 40 μm vorsetzen
der Entlüftung	Späne auf der Dichtfläche	Späne, Rost, Schmutz entfernen
Erwärmung des Ventils	fehlender oder zu niedriger Versorgungsdruck	Versorgungsdruck 10 % über
		Ausgangsdruck legen, um Lebens-
		dauer nicht zu beeinträchtigen

2.5. Technische Daten und Abmaße

3/2 Wege Sitzventil mit Proportionalmagneten und integrierter elektro-Bauart:

nischer PI Reglung

Temperaturbereich: 0 bis 50°C Arbeits-, -10°C bis +60°C Lagertemperatur

Gehäuse: Aluminium/MS, Innenteile: MS/Edelstahl, Dichtungen: NBR (G ¹/8": FPM) Werkstoffe:

IP54 mit Standardstecker, IP65 mit Spezialstecker

ACHTUNG! Bei Unterbrechung des Versorgungsdruckes ist die 24 V Versorgungsspannung abzuschalten oder der Sollwert auf 0 V/0 mA zu setzen, um eine starke erhitzung der Spule zu vermeiden.

geölte oder ungeölte Druckluft, neutrale Gase,

CO2 (40 µm)

Versorgungsdruck:

min. 10 % über Regeldruck max. 25 bar für G ¹/8, 55 bar für G ¹/4, 16 bar für G ¹/2 und G 1 G ¹/8 - 300 l/min, G ¹/4 - 1100 l/min,

Volumenstrom: G 1/2 - 4000 l/min, G 1 - 6800 l/min Entlüftung: gleiche Nennweite wie Belüftung Luftverbrauch keinen Eigenluftverbrauch

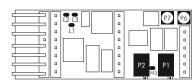
Elektrische Merkmale

24V DC, Leistungsaufnahme bei G $^{1}/8-12$ W, G $^{1}/4-22$ W Stromversorgung:

G 1/2 – 30 W, G 1- 40 W (durch Proportionalmagneten) steigende Kennlinie, 0 bis 10 V, 0/4 bis 20 mA,

digitale Ansteuerung, Interbus-S, Profibus DP $10~\text{k}\Omega$ bei Spannungsansteuerung Impedanz: $500~\Omega$ bei Stromansteuerung

Anschluß: 7 - poliger Stecker bei analoger Ansteuerung 16 - poliger Stecker bei digitaler Ansteuerung


Anschlußleitung < 1 m oder abgeschirmte Leitung

Genauigkeit

Signale:

< +/-1 % Reproduzierbarkeit: Linearität: < +/-1 % Ansprechempfindlichkeit: < 0,1 % Hysterese: < 1s über den Bereich, 70 ms bei 10 bis 90 % des Bereichs Regelzeit:

Regelplatine, Hybridelektronik

Proportionaldruckregler

Proportionaldruckregelventile mit elektronischer Regelung

Medien: geölte und ungeölte Druckluft, ungiftige Gase Temperaturbereich: -10°C bis max. +80°C Eingangssignal: 0-10V Stromaufnahme: 1mA bei 10V Eingangssignal Linearität: <0,5% bzw. 1%

Hysterese: <0,5% bzw. 1% Ansprechempfindlichkeit: <0,3%

Regelzeit: <1 Sek. Einbaulage: beliebig

Hinweis: Die Ventile erwärmen sich bei anliegendem Signal und fehlendem Versorgungsdruck unzulässig stark! Es wird daher zur Drucküberwachung der Einsatz eines Druckschalters empfohlen (siehe ab Seite 462).

Optional: Eingangssignal 4-20mA -E20, Ausgangssignal 0-10V -A10, Ausgangssignal 4-20mA -A20

		Regel-	Versorg.	Volumen-					
Тур	Gewinde	bereich	druck max	strom	KV-Wert	DN	Н	В	T
DRP 18-01	G 1/8"	0-0,1 bar	0,5 bar	300 l/min.	0,25 m³/h	3	80	35	63
DRP 18-05	G 1/8"	0-0,5 bar	2 bar	300 l/min.	0,25 m³/h	3	80	35	63
DRP 18-1	G 1/8"	0-1 bar	3 bar	300 l/min.	0,25 m³/h	3	80	35	63
DRP 18-6	G 1/8"	0-6 bar	12 bar	300 l/min.	0,25 m³/h	3	80	35	63
DRP 18-10	G 1/8"	0-10 bar	16 bar	300 l/min.	0,25 m³/h	3	80	35	63
DRP 18-20	G 1/8"	0-20 bar	25 bar	300 l/min.	0,25 m³/h	3	80	35	63
DRP 14-01	G 1/4"	0-0,1 bar	0,5 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-05	G 1/4"	0-0,5 bar	2 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-1	G 1/4"	0-1 bar	3 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-6	G 1/4"	0-6 bar	12 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-10	G 1/4"	0-10 bar	16 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-16	G 1/4"	0-16 bar	20 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-20	G 1/4"	0-20 bar	30 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-30	G 1/4"	0-30 bar	35 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 14-50	G 1/4"	0-50 bar	55 bar	1100 l/min.	0,92 m³/h	6	114	52	74
DRP 12-1	G 1/2"	0-1 bar	3 bar	4000 I/min.	3,3 m³/h	12	150	70	101
DRP 12-6	G 1/2"	0-6 bar	12 bar	4000 I/min.	3,3 m³/h	12	150	70	101
DRP 12-10	G 1/2"	0-10 bar	16 bar	4000 l/min.	3,3 m³/h	12	150	70	101
DRP 12-12	G 1/2"	0-12 bar	16 bar	4000 l/min.	3,3 m³/h	12	150	70	101
DRP 10-1	G 1"	0-1 bar	3 bar	6800 I/min.	5,7 m³/h	20	190	96	115
DRP 10-6	G 1"	0-6 bar	12 bar	6800 I/min.	5,7 m³/h	20	190	96	115
DRP 10-10	G 1"	0-10 bar	16 bar	6800 I/min.	5,7 m³/h	20	190	96	115
DRP 10-12	G 1"	0-12 bar	16 bar	6800 I/min.	5,7 m ³ /h	20	190	96	115

Bestellbeispiel: DRP 18-01

Standardtyp

Kennzeichen der Optionen Eingangssignal 4-20mA . Ausgangssignal 0-10V Ausgangssignal 4-20mA

Ersatzstecker für Proportional-Druckregelventil mit elek	ktronischer Reaeluna
--	----------------------

Тур	Beschreibung
STDRP	gerader Stecker mit 2 m Kabel, 7-adrig
STDRP 65	gerader Stecker IP 65 mit 2m Kabel, 7-adrig
STDRPW	Winkelstecker mit 2 m Kabel, 7-adrig

Alle Angaben verstehen sich als unverbindliche Richtwerte! Für nicht schriftlich bestätigte Datenauswahl übernehmen wir keine Haftung. Druckangaben beziehen sich, soweit nicht anders angegeben, auf Flüssigkeiten der Gruppe II bei +20°C

Proportionaldruckregler

3.1. - Typ DRPE ... -

3.1.1. Merkmale: • kompakt, Anschluss über Rundstecker

• geschützt durch Gehäuse

vibrationsunempfindlich, lageunabhängigkein Luftverbrauch im Ruhezustand • verschiedene Sollwert- und Istwert-Signale

• geschlossener Regelkreis, Option externe Rückführung für übergeord-

neten Regelkreis (double loop)

• Schutzart IP 65

3.1.2. Anwendungen: Halbleitertechnik

Fabrikationsautomation

Robotik

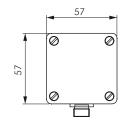
Automation

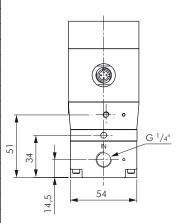
• Bandspannungsregulierung

• Spritztechnik

• Drehmomentregulierung

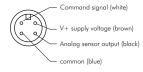
• Reifenherstellung und -prüfung


3.1.3. Beschreibung: • Sollwert 0-10 V oder 4-20 mA, Istwert-Signal 0-10 V Standard


• eingebauter Drucksensor ergibt eine hohe Genauigkeit

• vielfältige Regelbereiche in verschiedenen Modellen

3.1.4. Technische Daten und Abmaße


DRPE					
	Regelkreis (loop)	single			
	Regelbereich	0 - 10 bar			
	Nenndurchfluss	400 NI/min			
	Filter	40 my eingebaut			
pneumatisch	Linearität	±0,2% F.S.			
pneumansch	Reproduzierbarkeit	±0,2% F.S.			
	Genauigkeit	±0,5% F.S.			
	Hysterese	±0,5% F.S.			
	Speisung	110% des maximalen Ausgangsdruckes			
	Speisung	15 - 24 VDC			
	Stromversorgung	80 mA standby, 325 mA max.			
	Sollwertsignal	0 - 10 V oder 4 - 20 mA			
elektrisch	Ausgangssignal	0 - 10 V Standard			
		CMOS	0 VDC low, 12 VDC high		
	Logischer Ausgang	TTL	0 VDC low, 5 VDC high		
		Open Collector	0 VDC low, 12 VDC high		
	Temperaturbereich	0 - 60 °C			
	Materialien: Medienberührte Teile:	Aluminium			
Einsatzbedingungen		Nickel, Buna-N, rostfreier Stahl 316 SS			
Linsuizbeanigungen	Anschlüsse P und A	1/4" NPT, G 1/4"			
	Bauhöhne H	127 mm			
	Gewicht	700 g			

3.1.5. Connections

Input connections

Pneumatic Connections

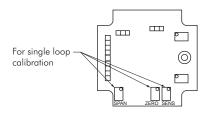
Supply: Connect to source of contaminant-free air (for proper operation, must be 100-110% of full scale output pressure.) For vakuum operation, can be left open to atmosphere.

Output: Connect to the downstream volume where pressure is to be regulated.

Exhaust: Leave open to atmosphere (or capture).

3.1.6. Configurations

3.1.6.1. Installation procedures


- 1. Connect supply power and ground to the brown and blue wires on the power cord.
- 2. Connect the positive (white) and the negative (green) input wires of the power cord to the command signal source.
- 3. Connect the analog output (black) wire to the device used for monitoring the feedback signal(s) using power ground
- 4. Connect a suitable pressure source (100-110% rated output pressure) to the supply port "s". 5. Connect output port "o" of the unit to the load volume.

Telefon: (0561) 95885 - 9 · Telefax: (0561) 95885 - 20 · e-Mail: verkauf@landefeld.de

- 6. Check all connections and then plug the pre-wired power cord into the unit.

LANDEFELD

3.1.6.2. Calibration procedure

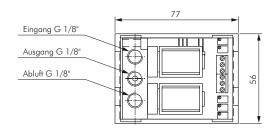
- 1. Remove the top cap by loosening the 4 screws
- To adjust the output pressure span, set the command signal to max. and turn the span pot CW to decrease the output and CCW to increase the output.
- 3. To adjust the output pressure zero, set the command signal to its min. and turn the zero pot CW to decrease the output and CCW to increase the output.
- 4. The gain pot can be adjusted for better resolution, but adding to much gain can cause the unit to go into oscillation. Adjustments are CW to increase, and CCW to decrease.

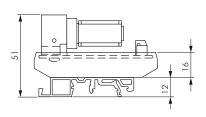
3.2. - Typ DRPD ... -

3.2.1. Merkmale:

- sehr kompakt
- Montage einzeln, auf DIN-Schiene oder Mehrfach-Grundplatte
- lageunabhängig
- kein Luftverbrauch im Ruhezustand
- verschiedene Sollwert- und Istwert-Signale
- geschlossener Regelkreis, Option externe Rückführung für übergeordneten Regelkreis (double loop)

3.2.2. Anwendungen:


- Instrumentierung
- Fabrikationsautomation
- Prozesstechnik
- Medizinaltechnik
- Bandspannungsregulierung
- Automation


3.2.3. Beschreibung:

- geringe Abmessungen
- Sollwert 0–10 V oder 4–20 mA, Istwert-Signal 0–10 V Standard
- \bullet eingebauter Drucksensor ergibt eine hohe Genauigkeit ($\pm 0.5\%$ F.S.)
- vielfältige Regelbereiche in verschiedenen Modellen

3.2.4. Technische Daten und Abmaße

DRPD				
	Regelbereich	Vakuum bis 41 bar		
	Nenndurchfluss	35 NI/min		
	Totraumvolumen	15 cm ³		
	Filter	40 my eingebaut		
pneumatisch	Linearität $\pm 0.2\%$ F.S.			
	Reproduzierbarkeit ±0,2% F.S.			
	Genauigkeit ±0,5% F.S.			
	Hysterese	±0,5% F.S.		
	Speisung	110% des maximalen Ausgangsdruckes		
	Speisung	15 - 24 VDC		
	Stromversorgung	80 mA standby, 250 mA max.		
elektrisch	Sollwertsignal 0 - 10 V oder 4 - 20 mA			
	Ausgangssignal 0 - 10 V Standard			
	Logischer Ausgang	0 VDC low, 5 VDC high		
Umgebung	Einsatztemperatur 0 - 60 °C			
	Materialien:	Medienberührte Teile: Aluminium		
		Nickel, Buna-N, rostfreier Stahl 316 SS		

Alle Angaben verstehen sich als unverbindliche Richtwerte! Für nicht schriftlich bestätigte Datenauswahl übernehmen wir keine Haftung. Druckangaben beziehen sich, soweit nicht anders angegeben, auf Flüssigkeiten der Gruppe II bei +20°C

Proportionaldruckregler

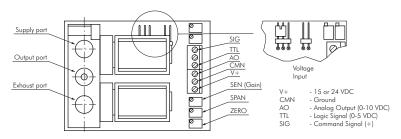
3.2.5. Connections

Pneumatic Connections

Supply: Connect to source of contaminant-free air (for proper operation, must be 100-110% of full scale output pressure.) For vakuum operation, can be left open to atmosphere.

Output: Connect to the downstream volume where pressure is to be regulated

Exhaust: Leave open to atmosphere (or capture). For vakuum operation, connect to vacuum source.


3.2.6. Configurations

3.2.6.1. Installation Procedure

- 1. Connect suppy power to the terminals marked "V+" and "CMN".
- 2. Connect the positive command signal to the terminal marked "SIG", and the negative command signal to the terminal marked "CMN".
- 3. Connect the Analog Output (terminal marked "AO") and the Logic Output (terminal marked "TTL") to the Appropriate decives for monitoring the feedback signals using the power ground as a reference.

 4. Connect a suitable pressure source (100-110% of the rated output pressure) to the supply port. For vakuum units:
- Connect the vacuum source to the exhaust port, and leave the supply port open to atmosphere.
- 5. Connect the output port of the unit to the load volume.

3.2.6.2. Jumper positions

3.2.6.3. Calibration Instructions

- 1. To adjust the output pressure span, set the command signal to maximum and turn the span pot clockwise to decrease the output and counterclockwise to increase the output.
- 2. To adjust the output pressure zero, set the command signal to its minimum and turn the zero pot clockwise to decrease the output and counterclockwise to increase the output.
- 3. The "SEN" or gain pot can be adjuted for better resolution by turning clockwise to increase and counterclockwise to decrease

NOTE: Adding to much gain can cause the unit to go into oscillation.

3.3. Artikelnummern - Typ DRPR ..., DRPD ... -

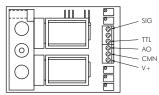
Proportionaldruckregler für Leitungseinbau und Schaltschrankmontage

Anwendung: Der Proportionaldruckregler regelt den Druck auf der Sekundärseite proportional zu einem elektischen Eingangssignal (0-10 V oder 4-20 mA). Aufgrund des geringen Durchflußes des Reglers für DIN-Schienenmontage, empfiehlt sich dieser als im Schaltschrank verbauter Pilotregler für einen ferngesteuerten Druckregler Typ DRi (Seite 401) oder FDRi 03 (Seite 402).

Werkstoffe: Körper: Aluminium, Messing, Kunststoff, Dichtungen: NBR

Medien: gefilterte, trockene Druckluft, ungiftige Gase Temperaturbereich: -10°C bis max. +60°C
Eingangssignal: 0-10 V (optional 4-20 mA)
Spannungsversorgung: 15-24 VDC (80-325 mA) (Typ DRPD: 80-250 mA)
Schutzart: IP 65** (Typ DRPD: IP 00)
Anschluß: M12 Stecker (4-polig) (Typ DRPD: Kabelklemmen)

Linearität: 0,2% vom Endwert Wiederholgenauigkeit: 0,2% vom Endwert

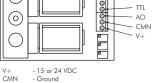

Hysterese: 0,5% vom Endwert Genauigkeit: 0,5% vom Endwert

Durchfluß: 530 l/min bei 10 bar (Typ DRPD: 35 l/min) Entlüftungsleistung: ca. 190 l/min (Typ DRPD: ca. 35 l/min)

Тур	Тур		max. erlaubter Druck		Manometer-		
0-10V (Standard)	4-20 mA	Regelbereich	auf Sekundärseite*	Gewinde	anschluß		
Standardregler (mit	Standardregler (mit Befestigungswinkel), 530 l/min.						
DRPE 14-1	DRPE 14-1-E20	0 - 1 bar	2 bar	G 1/4"	G 1/8"		
DRPE 14-4	DRPE 14-4-E20	0 - 4 bar	11 bar	G 1/4"	G 1/8"		
DRPE 14-6	DRPE 14-6-E20	0 - 6 bar	11 bar	G 1/4"	G 1/8"		
DRPE 14-10	DRPE 14-10-E20	0 - 10 bar	13 bar	G 1/4"	G 1/8"		
DIN-Schienen-Mon	tage, 35 l/min.						
DRPD 18-1	DRPD 18-1-E20	0 - 1 bar	2 bar	G 1/8"			
DRPD 18-4	DRPD 18-4-E20	0 - 4 bar	11 bar	G 1/8"			
DRPD 18-6	DRPD 18-6-E20	0 - 6 bar	11 bar	G 1/8"			
DRPD 18-10	DRPD 18-10-E20	0 - 10 bar	13 bar	G 1/8"			
DRPD 18-20	DRPD 18-20-E20	0 - 20 bar	24 bar	G 1/8"			

^{*} Der Drucksensor auf der Sekundärseite kann oberhalb dieses Druckes beschädigt werden, ** nicht M12-Stecker

Telefon: (0561) 95885 - 9 · Telefax: (0561) 95885 - 20 · e-Mail: verkauf@landefeld.de



Ground

Analog Output (0-10 VDC)

Logic Signal (0-5 VDC)


Command Signal (+) TTL

Typ DRPD ...

Typ DRPE ...

